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The problem of the two-dimensional translational-rotational motion of a rigid body in a central 

gravitational field is considered. All steady motions are found, their stability is investigated, and 

bifurcation diagrams are constructed. New effects resulting from the use of the exact expression for the 

gravitational potential are discovered. 

1. The problem of the motion of an oblate body in a central gravitational field is considered. 
We model the body by a massless disk of radius a, with point masses m, / 2 (i = 1, 2) attached at 
the opposite ends of two mutually perpendicular diameters d,, 

We assume that the disk moves in a plane containing the centre of attraction. Then the 
position of the disk is completely specified by three generalized coordinates: the distance r 
from the centre of mass C of the body to the centre of attraction 0, the angle 0 between the line 
OC and the diameter 4, and the angle cp between some fixed direction in the plane of the 
motion and the OC axis. The kinetic energy T and potential energy V of the disk take the form 

T=Yzm[~2+r2~2+.2(C)+~)2] 

V=4(a)+4(-a)+4(a)+F2(-a) 

~(U)=-Y2fMmi(r2 +2rayi+a2)-H (i=1,2) 
y, = case, y2 = sin8 

Here M is the mass of the centre of attraction, m = m, + m, is the mass of the body, and f is 
the gravitational constant. 

The Lagrangian T-V does not depend on the angle cp. Hence the equations of motion admit 
of the area integral 

(1.1) 

in addition to the energy integral T + V = h = const and the body can perform motions of the 
form 

r = const, 8 = const, @ = const (1.2) 

Here the centre of mass of the body rotates uniformly about the centre of attraction, and the 
body preserves a constant orientation with respect to that centre. 

Ignoring the cyclic variable cp, we introduce the Routhian R+ R(i, 8, r, 8, k) by the relation 
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R = T-V - k@, in which the variable 3, has been eliminated from the right-hand side by using 
the area integral (1.1). The Routhian has the form 

i2 +-$/j2)+&-+f-~ k2 
2 m(r2 +a21 

I R2 •t Rl +& 

where R, is a homogeneous form of the positional velocities i and 6 of degree s = 0, 1, 2. 
Putting ~=~(~~~)K, we reduce the effective potential -8 of the body to the form 
-& = few where 

The constants r and 8 in (1.2) correspond to critical points of the effective potential, i.e. 
critical points of the fiction W, while the constant + in (1.2) is given by relation (1.1). 

2. We consider the system of equations 

$sT[rnl(g -q)sin8+mz(I$ -Q,)coscfJ=O 

+~[qlr+nsinBf+Q*(r-nsinO)]-(rzK+brltZ =O 

(2.1) 

(2.2) 

Equation (2.1) is satisfied identically by the values 8 = 0 and 8 = K/Z (modx). Equation (2.2) 
then takes the form 

K2 =&(r), ~~(r)=~i(r2+Uz)3(r2-~*)-2r-1+~~(r2+=z)~ 

(i=l, j=2when8=0 or i=2, j=l whene=x/2) 
(2.3) 

We note the obvious properties of the function ZYij(r)(r E (a, +m)) 

Hg(r) > 0, lim Hg(r) = liF+oHi,(r) = +m 
r--f- 

and consider the equation H,:(r) = 0 which can be represented in the form 

mj _ (r4 -10r2a2 +a4)(r2 +a*)% --- 
mi (r2 -a2)3r3 

= Mr) 

Henceforth the prime denotes differentiation. 
When r E (a, +-) the function p(r) decreases monotonically from +M to -1+0 since 

r!li(tp(r) = +T lim u(r)=-1, p’(r)<0 Vr>a 
,-++oo 

(2.4) 

and therefore takes all positive values, Thus when r > a Eq. (2.4) has a unique root r = 5: for 
all values of the parameter rrrj /mi E (0; +M). The function Hi,(r) takes its minimum value 
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at the point $. 
Hence Eq. (2.3) has no solutions when K’ < K:, has a unique solution r = 5: when ic2 = K: 

and two families of solutions r = $(K~) when ~~ > K;, where 

Henceforth the upper inequality sign corresponds to the branch denoted by the plus sign, 
and the lower sign corresponds to the branch with the minus sign. 

We shall assume further without loss of generality that m, > %. Then rp > ril because p(r) is 
a monotonically decreasing function (see Eq. (2.4) from which the values r,“, and ril are 
obtained, the first when i = 1, j = 2 and the second when i = 2, j = 1). Moreover, we also have 
the inequality H12(r) > H,,(r)V > a, because 

H,2(r)-H21(r)=(ml -m2)[(r2+a2)x -(r* -c~*)*r](r*+a*)~(r* -a*)-*r-I >0 

Obviously, solutions of the form 

8~0, r=&(K*) EI 6=x/2, r=ri(K*) (2.5) 

correspond to an orientation of the body in which one of its principal central axes of inertia is 
directed along the radius vector of the centre of mass, and the other along the tangent to the 
orbit. 

3. We elucidate the nature of the critical points (2.5) of the effective potential, to which end 
we compute the matrix coefficients of the second variation of W 

Henceforth the expression (. . .)@‘) means that the function in brackets has been computed 
for 0 = 0, r = ri(K2)(i = 1, j = 2) or for 0 = 7c/2, r = ri(K2)(i = 1, j = 2). 

Thus the sign of a2Wl&2 is the same as the sign of H,;, i.e. 

-&/ (ii) 

c-1 &* 
i Owhenr=$(~*) 

In order to clarify the sign of the expression 

we investigate the equation a2W /&I2 = 0 which can be represented in the form 

mj -= (3r* +a*)(r* +a*)’ sv(r) 

m; 3r(r* - a2)3 

When r E (a;+~) the function v(r) decreases monotonically from +- to l+O since 

v(r) > 0, v’(r) < 0, lili, v( r) = +=, lim v(r) = 1 
r-b+- 

(3.1) 
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Hence V(T) > 1Vr >a, i.e. Eq. (3.1) has no solutions when i = 1, j= 2 (we recall that m, > 4), 
and has the unique solutions r = ri, when i = 2, j = 1. 

Thus 

@*w/&3*)(‘*) > 0, r> a; (iw/&*)(*‘) > O(< O), r< r2;(> $1) 

We shall ascertain the relative positions of the points ri and r;l. The first of these is defined 
by Eq. (2.4) and the second by Eq. (3.1) (with i = 2, j= 1 in both cases). When r E (a;+=) the 
functions p(r) and V(T) decrease monotonically from + 00 to -1 and +l, respectively, and inter - 
sect at the unique point 

r = rpv =a[(29+m)l12JK = 2.174~ 

Here 

u(r)> v(r), (u(r) < v(r)) for r < rwv(r > rpv) 

Consequently, rlI > rZ; if 

m2 1 1 _<-Z-Z (29+G%%7+J769)3 =S ~ o 283 

ml CLQjl”) ql”) (41+J769)%(33+&& ’ 

Thus when m, > m, the solution 0 = 0, r = rA(t?) is stable in the secular sense (the degree of 
instability x = 0), and the solution 9 = 0, Y = ~;Z(K*) is unstable (x = 1). 

When m, > m, > LV.$ the solution 8 = Z/ 2, r = r~l(~2) is stable in the secular sense (x = 0) if 
ri(K2) c r;l, and unstable (x = l), if PA > r2:, while the solution 8 = X/ 2, I’ = Q;(K~) is always 
unstable (x = 1). 

When m, < ~6 the solution 8 = 7r/2, r = r;,(K’) is always unstable (x = l), while the solution 
9 = lc/2, r = r..(~*) is unstable (x = l), if ri(~*) c ril and secularly unstable (x = 2) if r,7(K2) < ril; 
in the latter case gyroscopic stabilization is possible. 

Finally, when m, lrrz., = S the two Poincare stability coefficients vanish simultaneously at the 
point r = ri, and the solution 9 = 7~ 12, r = r$(d) is always unstable (x = 1). 

4.At 9=7c/2, r=r;,, I? = K: = HZ1(riI) the second derivative with respect to 9 of the effective 
potential vanishes and (when 9/m, f 6) the degree of instability of the corresponding 
solution 9= n/2, r = r$(~‘> changes, As a result, solutions of system (2.1), (2.2) for which 
8=11:/2_ty$~~)(Oc w(K~)<x/~) branch off from this solution at this point. These solutions 
correspond to orientations of the body such that neither of the principal central axes of inertia 
coincide with either the radius vector of the centre of mass or the tangent to the orbit. 

We will indicate the main properties of the corresponding steady motions 

First we note that when 8+ 0, rr/2(modrr) Eqs (2.1) and (2.2) can be represented, respect- 
ively, in the form 

m2h 
= Q(r,e> and ~~ = Y(r,8) 

Here 

&(r,e) = s -4 -ttge, Y(M) = 
Pz -Q2 

(r2 if2’* (m,[fi(r+acosCl)+ 
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Analysis of the function @(r, e)(f3 E (0, n/2), r E (a, +w)) shows that 

*(r,7tl4)=1, lim @(r,e)=l 
r-_)+- 

al;m4Q(r,B) = v(r), l~mno@(r,8) = 11 v(r) 

~(a+o,e)>~(r,e)>~(+oo,e)whene~(O,1t/4) 

~(a+o,e)c~(r,e)c~(+~,e)when8E(It/4,~/2) 

Hence when m, I m, c 1 the steady motions (4.1) satisfy the following conditions 

eE(7t/2-\y,,7r/2+v,), re(a,r;ll 

Here w. = rc/2- 8, and 8. is a root of the equation 

Since the relation 

;;mh @. (Cl) = +-, qlt/4)=1, ~,(Ic/~)=o, ah(e)<0 

holds when OE(O, x/2), this root lies in the range (rr/4;~/2), with 8, tending to rc/4+0, if 
elm, tends to 1-O. Hence the deviation of 8 from 7r/2 does not exceed w* ~(O;rr/4) and 
asymptotically approaches the limiting deviation w. when r + a+ 0. Here (see the equation 
K’ = Y(r, 0)) K' tends to the value 

K2 =2a 

i 

m (l+cose,)K +(i-c0se,)K 
+m2 

(1+sin8,)M +(l-sine,+ 
l I 

sin 8, COST, 
i 

Depending on the mass ratio m2 /q, the value of K? can be smaller or greater than ~';1. In 
partiCUhr, if m, /??z, is near t0 Unity, then K: < Kz, whereas if m, lq<l, then K? > K:. 

5. The steady motions of the body (1.2) define a line L in (r, 8, K*) space given by relations 
(2.1) and (2.2). Figures 1 and 2 show projections of this line onto the (r, K*) plane. Curves P, Q 
and R correspond to motions for which 8 = 0, II/ 2, X/ 2 5 Y(K’)(modrc). Here curves P and Q 
are projections of plane branches of the line L corresponding to solutions (2.3, and curve R is 
the projection of a pair of three-dimensional branches corresponding to solutions (4.1). The 
numbers (0), (1) and (2) indicate the degree of instability of the corresponding steady motions. 

The forms of the curves P and Q and the distributions of the degrees of instability are shown 
in Figs 1 and 2 for the cases 1~ m, lm, > 6 and m, /m, < 6, while the form of the curve R and the 
distribution of the degrees of instability (according to the general ideas of bifurcation theory 
[l]) are shown for the cases 1-m,lm,<l and m,/q@l. 

The points A,, A, and B* are branch points of the line L. At these points system (2.1), (2.2) 
loses local uniqueness of the solutions (at points A with respect to the variable r, and at points 
B with respect to the variable 8; in the latter case the pair of branches of the line L corres- 
ponding to solutions of (4.1) leaves the 8= n/2 plane transversally to the latter). 

Note that the bifurcation value ril tends to +oo when m, lm, + 1-O. This means that even in 
those cases when the size of the body is small compared to the radius of the centre of mass 
orbit, motions can be secularly stable with the major axis of the inertial ellipsoid directed along 
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Fig. 1. Fig. 2. 

the tangent to the orbit, the intermediate axis along the radius vector, and the minor axis (here 
null) along the normal to the orbital plane. Moreover, steady motions exist for which two of 
the three principal axes of inertia do not coincide with the axes of the orbital system of 
coordinates. These results depend on the use of the exact expression for the attractive potential 
and are impossible in principle when the “satellite” approximation for this potential is used 
(see also [2-4]). 

To conclude, we note that if m,lm, =l--E (O<@l), then rll =4(13/2)ae-K(1+o(l)). When 
r-r;, both the remaining and rejected components in the satellite approximation to the 
gravitational potential have the same order of smallness 

(1-m+?z,)(a/r)2 - E2, (Q/r)4 -E2 

We recall that the satellite approximation to the gravitational potential is obtained from the 
exact expression for this potential by neglecting all terms of order (alr)3 and above, where a is 
the characteristic size of the body and r is the distance from the centre of mass to the centre of 
attraction, and that terms of order (a/r)* are retained irrespective of the order of magnitude of 
the coefficients in front of these terms. In the given problem, when the potential is expanded as 
a series in powers of a/r, there are no terms of order (alr)3 terms of order (alr)4 have 
coefficients of order unity, while terms of order (a/r)‘, corresponding to the orientation of the 
body have, under the above-stated conditions m, lrq = 1 -E, r - ril, coefficients of order (a/r)“. 
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Research (93-013-16242). 

REFERENCES 

1. CHETAYEV N. G., Stability of Motion. Papers 08, Atmlyticnl Mechanics. Izd. Akad. Nauk SSSR, Moscow, 1962. 

2. BELETSKII V. V. and PONOMAREVA 0. N., Parametric analysis of the stability of relative equilibrium in a 
gravitational field. Kosrnich. Is&d. 28, 5,664-675,1990. 

3. KARAPETYAN A. V. and SHARAKIN S. A., On the steady motions of two mutually gravitating bodies and their 

stability. Vests. MGU Ser. Mat. Mekh. 3, 42-48, 1992. 
4. KARAPETYAN A. V., On the bifurcation of the steady motions of two mutually gravitating bodies. In 

Investigations of Stability nnd Strrbilizntion of Motion, pp. 20-26, Vychisl. Tsentr. Ross. Akad. Nauk, Moscow, 1993. 

Translated by R.L.Z. 


